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Abstract—Two independent synthetic pathways for the preparation of 4-methoxy, 4-benzyloxy and 4-hydroxy-2,6-difluoroanilines,
versatile building blocks in medicinal chemistry, based on diazonium coupling or Curtius-type rearrangements are presented.
� 2003 Elsevier Ltd. All rights reserved.
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Fluorinated compounds play a major role in drug dis-
covery, as the bioisosteric replacement of hydrogen by
fluorine has an effect on electronic, lipophilic and steric
parameters, which can critically influence the pharmaco-
dynamic and pharmacokinetic properties of drugs.1

Most importantly, fluoro derivatives are more resistant
to metabolic degradation than their hydrogen counter-
parts. On the other hand, ortho substituents on aromatic
rings have been recognized as conferring important
properties on the molecules that contain them. In con-
formationally restricted systems, they are able to freeze
the conformation, which leads to optimal target inter-
action. Moreover, it has been shown that reduced
molecular flexibility is an important parameter to
achieve good oral bioavailability.2

Within one of our drug discovery programs, we were
confronted with the need to synthesize 4-hydroxy-2,6-
difluoroaniline and several 4-alkoxy-2,6-difluoroanilines
as building blocks (Fig. 1). Literature reported methods
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for 2a were not adequate for multigram synthesis,3 while
the synthesis of 1 and 2b had not been previously
described.4 We herein describe convenient procedures
for the synthesis of these compounds in multigram scale
and with good overall yields.

The synthesis of 2a described in the literature3 (Scheme
1) relies on the nucleophilic attack of sodiummethanoate
on 2,4,6-trifluoronitrobenzene 3. The drawback of this
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method is the lack of regioselectivity: an inseparable
1:2.2 mixture of the para and ortho substituted products
4a and 4b is obtained. Separation can only be achieved
after selective demethylation of the ortho methoxy with
boron tribromide. After reduction, the desired aniline 2a
is obtained in less than 20% overall yield.

In our hands, all efforts to improve the regioselectivity
by using different alcohols or bases failed. We found
that after reduction of the difluoromethoxynitrobenzene
regioisomeric mixture with hydrogen over palladium/
carbon to the corresponding difluoromethoxyanilines,
these could be separated into both regioisomers: the
overall yield was 14% but the method was still limited by
the large amount of undesired isomer isolated in the
process (Scheme 1).

We were interested in an alternative approach leading to
this versatile reagent. It should be highly effective and
applicable to large-scale synthesis forming the desired
regioisomer exclusively. It is well known that fluoro-
arenes undergo smooth ortho metallation when they are
treated with organolithium reagents. A second electro-
negative substituent accelerates the deprotonation con-
siderably, and in the case of 1,3-difluorobenzene the
substrate is acidic enough to react smoothly with n-
butyllithium forming solely the 2-lithiated derivative.5

The resulting organolithium compounds are multipur-
pose reagents, and for example the almost quantitative
conversion of 3,5-difluoroanisole into 2,6-difluoro-4-
methoxybenzoic acid after successive treatment with n-
butyllithium and carbon dioxide has been described.6

Since the degradation of 2,6-difluorobenzoic acid and
analogues into the corresponding anilines using the
Schmidt or Curtius rearrangement has been reported, we
intended to apply this pathway to synthesize the desired
2,6-difluoro-4-alkoxyaniline.

Starting from 3,5-difluoroanisole,7 lithiation with n-
butyllithium in THF at )78 �C and treatment with solid
or gaseous carbon dioxide smoothly gave the desired
product 6a in 81% yield and with complete regioselec-
tivity (Scheme 2).8

The degradation reaction of a carboxylic acid to the
corresponding amine with one less carbon unit is linked
with the names of Hofmann, Curtius, Schmidt and Los-
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Scheme 2. Reagents and conditions: (a) 1. nBuLi, THF, )78 �C, 2. CO2, )7
reflux.
sen, respectively, depending on the nature of the inter-
mediate species.9 The direct conversion of the carboxylic
acid into the amine, the so-called Schmidt reaction,10 has
been reported for 2,6-difluorobenzoic acid using sodium
azide in sulfuric acid.11 Applying this methodology we
obtained the desired aniline in low yield accompanied by
the 1,4-diamino compound. Using the same reagents
diluted in chloroform12 the reaction resulted in decom-
position of the components. In cases where the acyl
azide is isolated prior to its thermal rearrangement to
yield an isocyanate the reaction is known as the Curtius
rearrangement.13 After generation of the acyl chloride
with thionyl chloride, reaction with sodium azide, ther-
mal rearrangement and treatment with water, we
obtained the desired aniline in about 39% yield.14 Using
trimethylsilyl azide as azide source did not show a
positive effect. A further opportunity was the facile
generation of the intermediate acyl azide directly from
the acid by using diphenyl phosphorylazide (DPPA).15

However, using this convenient method the yield was
also low, probably due to problems during the purifi-
cation of the polar and oxidizable product. On the other
hand, when treated with alcohols instead of water, the
intermediate isocyanates of the Claisen- or Schmidt-
rearrangements form carbamates, which can be purified
more easily than the unprotected p-alkoxyaniline.
Therefore we generated the t-butyl carbamate16 7a with
t-butanol and––more rapidly––the ethyl-carbamate 7b
with ethanol in 47% and 68% yields starting from the
acid (Scheme 2).17 From the carbamates, which can be
stored without decomposition at room temperature in
air, the aniline can be liberated almost quantitatively by
treatment with a base.

In the course of our investigations we were also inter-
ested in analogues bearing a protecting group on the
oxygen, which can be removed under milder conditions
than the methyl ether in 2a, as for example the benzyl-
oxy ether 2b. Starting from 3,5-difluorophenol we gen-
erated the benzyl ether 5b in 89% yield.18 The lithiation/
carboxylation sequence gave access to the desired car-
boxylic acid 6b (42% yield),19 which was converted into
the ethyl carbamate 7c using DPPA in almost quanti-
tative yield.20 From this compound the aniline 2b could
be obtained under basic conditions (86%).21 Addition-
ally we were interested in a carbamate that liberates the
aniline in an acidic environment. Consequently we used
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2-trimethylsilanyl ethanol as the alcohol component22

and obtained the desired carbamate 7d in 75% yield
(Scheme 2).23

A different approach was chosen to synthesize 4-
hydroxy-2,6-difluoroaniline 1 (Scheme 3). We envisaged
3,5-difluorophenol as a suitable aromatic substrate for
the coupling with diazonium compounds, a reaction
known to be para-selective with respect to the electron-
donor substituent.24 Indeed, coupling of 3,5-difluoro-
phenol with freshly prepared phenyl diazonium salt
(generated by diazotization of aniline with nitrous acid)
under alkaline conditions regioselectively resulted in the
azo compound 8,25 which could be cleaved to give 1 by
hydrogenation in good yield (73%).26 Aimed at 4-
hydroxy-2,6-difluoroaniline 1, this sequence in terms of
length and yield is obviously superior to alternative
approaches applying the methodologies shown in
Schemes 1 and 2, respectively, as in these cases a final
ether cleavage step should be incorporated. However,
the coupling with diazonium ions demands substrates
with strong electron-donor substituents and is therefore
limited to phenols and is not applicable for anisoles or
other alkoxy substituted aryls.

In conclusion, we have developed two independent
synthetic pathways for the preparation of 4-methoxy, 4-
benzyloxy and 4-hydroxy-2,6-difluoroanilines, which
achieve the desired compounds in good overall yields
and have proven to be adequate for multigram scale.
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